
REGULUS

Technical Report 2003-001

Example Based Derivation of Efficient 
Domain-Specific Speech Recognisers from a 

General Linguistically Motivated Unification Grammar

Manny Rayner, Beth Ann Hockey 
and John Dowding



Example Based Derivation of Efficient Domain-Specific Speech Recognisers
from a General Linguistically Motivated Unification Gramma r

Manny Rayner, Beth Ann Hockey and John Dowding
Mail Stop T-27A

NASA Ames Research Center
Moffett Field, CA 94035-1000

{mrayner,bahockey,jdowding}@riacs.edu

Abstract

We describe an approach to portable
grammar-based language modelling in
which all models are derived from a
single linguistically motivated unification
grammar. Domain-specific CFG language
models are produced by first specialising
the grammar using an automatic corpus-
based method, and then compiling the re-
sulting specialised grammars into CFG
form.

We present results showing that recognis-
ers for multiple, fairly different, domains
can be derived from a single general gram-
mar. The process remains tractable as the
size of the general grammar increases, and
also scales well with the size of the train-
ing corpus used. We also show that a
simple method for compiling unification
grammars into CFG form can be success-
fully applied to grammars containing large
numbers of features, if it is enhanced by
suitable interleaving of the expansion and
filtering stages.

1 Introduction

Grammar based language models for constraining
speech recognition are particularly attractive as an
alternative to statistical models in domains that lack
extensive speech corpora. For commercial dialogue
systems, the case in which there is not enough
speech data to train effective statistical models is the

norm. This lack of data also impacts research do-
mains that are relatively novel, such as dialogue in-
terfaces to robots. Given the difficulties involved in
using statistical modeling with limited speech data,
we think it is important to investigate ways in which
grammar based models can be efficiently and effec-
tively produced.

Commercial speech platform vendors like Nuance
(Nuance, 2003) and SpeechWorks (SpeechWorks,
2003) have primarily focussed on grammar-based
language models, typically implemented in some
variant of context free grammar (CFG). However,
even moderate sized CFGs are tedious to write and
difficult to maintain, compared to grammars written
in higher level formalisms such as unification based
grammars. For each rule in the higher level gram-
mar there are likely to be many rules, very similar to
each other, in a comparable CFG. The higher-level
formalism provides a more compact representation
and expresses linguistic dependencies and relations
more transparently and explicitly than a correspond-
ing CFG.

Compiling the CFG language model from a gram-
mar written in the higher level formalism is one step
toward producing a CFG language model efficiently
while taking advantage of the attractive properties of
the higher-level formalism. Techniques for compila-
tion from unification grammars to CFGs have been
discussed in (Moore, 1998; Chappelier et al., 1999;
Kiefer and Krieger, 2000; Dowding et al., 2001;
Rayner et al., 2001a; Bos, 2002).

A further step in making the production of gram-
mar based language models efficient is to avoid the
overhead of creating a new unification based gram-



mars from scratch for each new domain. Grammars
for different domains can be sensibly viewed as sub-
sets of the larger grammar of a language. From the
point of view of portability, having a single general
unification based grammar for a language and de-
riving domain-specific grammars from it is clearly
preferable to building individual grammars for each
domain by hand. The obvious advantage is that
grammar rules are reusable and need only be writ-
ten once. Consequently, effort that would have gone
into developing the grammar for each domain can
instead be put into refining the general grammar,
thereby benefiting all subsequent domains.

In summary, the overall approach we are advo-
cating is to develop a general domain-independent
unification grammar for each language, semi-
automatically derive specialised versions of this
grammar for each new domain, and compile these
specialised grammars down first into CFG language
models and then into concrete recognisers. It is clear
that this is an ambitious programme, and that there
are many potential problems.

In the current paper, we describe a series of ex-
periments, carried out using theXXX system1, that
provide surprisingly positive answers to several of
the obvious questions. Our main claims are as fol-
lows:

• It is possible to derive multiple domain-specific
recognisers from a single linguistically mo-
tivated unification grammar, using example-
based methods driven by small corpora.

• These recognisers are competitive with ones
built from hand-coded grammars.

• The methods have good scalability properties,
both with respect to the number of domain-
specific training examples and with respect to
the size of the general grammar.

2 The XXX system

This section presents an overview ofXXX . XXX is a
suite of software modules, which extends the Open
SourceREGULUS system (Rayner et al., 2001a). It
consists of the following main components:

1The name of the system has been suppressed in the interests
of preserving anonymity.

1. An environment for developing and debugging
typed unification grammars, whose main com-
ponent is a compiler that converts grammars
of this form into left-corner parsers, using a
version of the algorithm described in (Moore,
2000).

2. A general linguistically motivated unification
grammar for a substantial fragment of English,
including an accompanying core lexicon.

3. Tools to support corpus-based specialisation of
the general grammar.

4. A compiler that translates typed unification
grammars into CFG language models ex-
pressed in Nuance Grammar Specification Lan-
guage (GSL) formalism. These language
models can then be compiled into Nuance
recognition packages using the Nuance Toolkit
nuance-compile utility.

All these components are implemented on top of
Sicstus Prolog and the Nuance Toolkit. In the rest of
the section, we will describe the general grammar,
the specialisation tools and the unification grammar
to CFG compiler.

2.1 The general grammar

The general grammar currently contains 145 phrase-
structure rules and 72 features, and is a greatly ex-
panded version of the grammar described in (Rayner
et al., 2000c), which in turn is loosely based on the
Core Language Engine grammar (Pulman, 1992).
It is built according to reasonably standard linguis-
tic principles and covers a large proportion of the
basic constructions of English, including the fol-
lowing: declarative clauses; Y-N questions; WH-
questions with movement of NPs, PPs, ADJPs and
ADVPs; embedded Y-N and WH-questions; imper-
atives; elliptical NPs, PPs, ADVPs and sequences
of these constituents; impersonal subjects; passives;
verbal and sentential adverbs; a wide variety of sub-
categorisation types of verb, including intransitives,
transitives, ditransitives, verbs taking PPs, verbs tak-
ing particles, equative and predicative “be”, aux-
iliaries, modals, verbs taking “-ing” complements,
infinitives and “to” VP complements, verbs taking
propositional and embedded question complements



Personal Satellite Assistant (PSA)
“affirmative”
“go to flight deck”
“mid deck and lower deck”
“measure pressure”
“what were oxygen and c o two one minute ago”
“when did the temperature reach twenty degrees”
“go to the crew hatch and close it”
“close all three doors”
Home Automation (HA)
“is there a tv in the living room”
“which devices are switched on”
“turn on the kitchen light and the stove”
“dim the light to fifty percent”
“thank you”
Travel Deals (TD)
“holidays in paris under two hundred pounds”
“i want something leaving from stansted”
“in spain during may or june from gatwick”
“is there anything in italy before may tenth”
“give me a winter brochure”
“do you have three star or four star”
Medical Speech Translator (MST)
“do you often have headaches in the morning”
“is the pain in the front of your chest”
“does the pain spread to the left arm”
“have you had chest pains for more than a week”
“are the headaches relieved by stress removal”
“how severe are the symptoms”
“is the frequency of the attacks increasing”
Intelligent Procedure Assistant (IPA)
“next step”
“go back”
“go to step three point two”
“no i said go to step five”
“set alarm for twelve minutes from now”
“record a voice note on step seven”
“delete voice note on step four point one”
“increase volume”
“say that again”
Mobile Agents (MA)
“take a picture of me”
“boudreaux follow me now”
“return to the hab”
“start tracking my physiological sensors”

Table 1: Example utterances for domains currently
covered by the general grammar

and verbs taking adjectives; postmodification of NPs
and VPs by PPs, ADJPs, ADVPs, relative and re-
duced relative clauses, numbers and names; use of
NPs as temporal adverbials; postpositions; date and
time expressions; conjunction of NPs, PPs, AD-
JPs, DETs and clauses; possessives; pronouns; bare
determiners; prenominal adjectives and compound
nominals; measure phrases; complex DETs; num-
bers; correction utterances; interjections; and po-
liteness phrases. The grammar includes a flexible
mechanism for specifying domain-specific lexical
sortal constraints, which for example makes it possi-
ble for a transitive verb to constrain the sortal type of
its direct object, or for a noun to constrain the sortal
type of a pre-modifying adjective.

The original grammar was developed for a
robotic command and control domain (Rayner et al.,
2000b). Further development work has been system-
atically carried out by extending it to cover five more
domains: a home automation application (Rayner
et al., 2001b); an ATIS-like travel planning applica-
tion; a medical speech translator (Rayner and Bouil-
lon, 2002); an intelligent procedure assistant (Aist
et al., 2002); and a mobile geology assistant. Exam-
ples of typical utterances for each of these domains
are shown in Table 1. Transcribed corpora of at least
several hundred utterances exist for all the domains,
and have been used to debug the grammar coverage.

2.2 The grammar specialisation tools

XXX implements a version of the grammar speciali-
sation scheme which extends the Explanation Based
Learning method described in (Rayner et al., 2002).
A grammar built on top of the general grammar is
transformed into a specialised unification grammar
in the following processing stages:

1. The training corpus is converted into a “tree-
bank” of parsed representations, using the left-
corner parser representation of the grammar.

2. Each parsed representation in the treebank is
processed into one or more specialised uni-
fication grammar rules, using the EBL algo-
rithm (van Harmelen and Bundy, 1988; Rayner,
1988).

3. Duplicate specialised rules are merged, so that
each unique rule is tagged with the number



of training examples from which it could have
been derived.

4. Each rule is subjected to a binarisation trans-
form, to ensure that no rule in the final set has
more than two daughters.

The EBL algorithm performsgrammaticalspe-
cialisation; it creates new grammar rules by merging
the constraints present in existing rules. Thus, in an
air travel domain, an example like “show me flights
to Boston” might induce a rule schematically of the
form

S -> V, NP, NP

The features on this derived rule will contain various
constraints, the exact nature of which will depend on
the original general grammar. With the grammar of
Section 3.2, the derived rule will for example con-
strain the first daughter NP’scase feature to unify
with the valuenonsubj, and itsnp type (sortal)
feature to unify with the value of the corresponding
indobj type feature on the V.

In general, the coverage of a specialised gram-
mar derived using the EBL method is a strict sub-
set of the coverage of the original grammar, in a
sense made precise in (Rayner et al., 2000a). The
loss of coverage is compensated by the specialised
grammar’s simpler structure, which typically pro-
duces faster processing and decreased ambiguity. In
practice, the net result is often that the specialised
grammar yields more accurate results than the orig-
inal one, both for text-based parsing (Samuelsson
and Rayner, 1991; Samuelsson, 1994) and for spo-
ken language processing (Rayner et al., 2002).

2.3 The UG to CFG compiler

The basic compilation mechanism for theREGU-
LUS UG to CFG compiler,enumerative expansion,
is described in (Rayner et al., 2001a). The com-
piler essentially performs non-deterministic expan-
sion of the unification grammar to yield a context-
free grammar, and then filters the result to remove
unreachable rules. Although a completely naive
implementation of enumerative expansion is insuf-
ficient for any but the very smallest grammars,
(Rayner et al., 2001a) showed how some simple en-
hancements can greatly increase its power. In par-
ticular, it is possible to effect a major reduction in

the size of the expanded rule-space by performing
the singular variable eliminationtransform, and it
is also possible to filter the space of expanded rules
in time linear in the number of rules.

For grammars as large as the general grammar
described in Section 2.1, the methods used by the
REGULUS compiler turn out to be inadequate; the
space of expanded rules is too large to generate in
its entirety. TheREGULUS compiler breaks down
not only on the general grammar itself, but also on
specialised grammars derived from it. The problem
is not the number of rules in the grammar, but rather
the number of features, which is unaffected by the
specialisation process; the size of the expanded rule
space increases exponentially with the number of
features. Other experiments showed that theGEMINI

compiler (Moore, 1998) was similarly incapabable
of compiling these grammars.

It does however turn out to be possible to com-
pile grammars with large numbers of features by
adding a further refinement to the enumerative ex-
pansion algorithm, which interleaves the expansion
and filtering phases. InXXX , the set of features is
divided into an ordered list of subsets; each subset is
in turn expanded non-deterministically, and the re-
sult is then filtered using the algorithms of (Rayner
et al., 2001a) before proceeding to the next subset.
The experiments in Section 3.2 show that compile
times still increase as the feature set expands, but
only slowly.

3 Experiments

This section describes a series of experiments which
empirically investigate the claims made in Section 2.
The experiments are divided into four groups, as fol-
lows:

1. Comparison of recognisers derived from gen-
eral grammars and recognisers derived from
hand-coded grammars (Section 3.1).

2. Scalability of specialised grammars with re-
spect to size of the original general grammar
(Section 3.2).

3. Scalability of specialised grammars with re-
spect to size of training corpora (Section 3.3).



4. Effect of interleaved expansion and filtering
on efficiency of UG to CFG compilation (Sec-
tion 3.4).

Corpora from two domains were used in these ex-
periments2. The first corpus, used in Section 3.1,
was collected in the September 2002 field test for
the Mobile Agents robotic geologist’s assistant at
Meteor Crater, AZ. The speech data in this corpus
was collected in an “open-mic” configuration, where
everything spoken by the subject was recorded,
whether the speech was intended for the robotic as-
sistant or not, and is acoustically noisy, since the
data was collected either from a subject inside a
space suit, or outdoors in high wind. The Mobile
Agents corpus used in our experiment contains 608
in domain utterances (3535 words) from 8 speakers,
which we divided into a 485 utterance training set
and a 123 utterance test set.

The remaining experiments were run on the Per-
sonal Satellite Assistant (PSA) corpus, which was
collected in user tests of the PSA system. The PSA
corpus has 10513 utterances (38943 words) from 27
speakers, which we divided into a training set of
5394 utterances and a test set of 5119 utterances.
It is worth mentioning that the length distribution
on this corpus is extremely skewed. A little more
than half the corpus (5344 utterances) consists of
one-word yes/no responses; the remaining 5169 ut-
terances have a mean length of 6.5 words. The test
sets for both corpora were unseen data for the pur-
poses of these experiments.

We used theXXX system to compile a variety
of language models and associated recognisers, us-
ing the general grammar of Section 2.1 and the
methods of Section 2.2 and 2.3. We evaluated the
language models and recognisers both in terms of
compile-time and run-time performance. With ref-
erence to the compilation process, we were inter-
ested in the time taken to perform EBL-based gram-
mar specialisation (EBL T), time taken to com-
pile the specialised unification grammar into a CFG
language model (UG CFG T), and the number of
nodes in the Nuance recognition package’s node ar-
ray (#Nodes).

2We have concentrated on these two domains here, since
they are the ones for which we have best data. Two of the other
systems built usingXXX are in parallel being submitted to the
demo track at this conference.

At run-time, we were interested in the accuracy
of the resulting recogniser and on its speed, mea-
sured on both training and test data. Grammar-based
recognisers reject a certain proportion of their input:
utterances are typically rejected if they are either
well outside grammar coverage, or acoustically too
noisy. We consequently present accuracy in terms of
three numbers.WER represents the standard word
error rate. REJ measures the proportion of utter-
ances rejected by the recogniser, andAWER (“ad-
justed word error rate”) measures the word error rate
on the utterances that were not rejected. Speed is
as usual measured as a multiple of real-time. Ex-
periments were run on a 1.9 GHz Pentium 4, using
Nuance 8 and SICStus 3.8.5.

3.1 Specialised versus hand-coded grammars

The data collected in the Mobile Agents field
test used a language model derived from a hand-
optimised unification grammar. Due to the existence
of this hand-optimized grammar, the Mobile Agents
domain provided the best comparison of hand-built
to automatically generated. After the field test, the
485 utterance training set was used to build a spe-
cialised grammar from the general grammar. The
specialised version was built in one day, and un-
derwent no additional tuning. Table 2 compares
the performance of this specialised grammar with
the hand-coded grammar on the training and test
sets respectively. The specialised grammar performs
quite well, generally out-performing the hand-coded
grammar. The results also demonstrate that it is pos-
sible to build effective specialised grammars in this
domain from relatively small amounts of training
data.

Version WER REJ AWER xCPUrt
(%) (%) (%) (%)

Measured on training set
Hand-Coded 12.56 7.72 4.54 58.79
Specialised 5.29 1.86 3.21 11.78

Measured on test set
Hand-Coded 9.50 7.50 3.25 57.50
Specialised 5.49 2.44 2.91 13.74

Table 2: Comparing an automatically specialised
grammar with a hand-coded grammar: WER, pro-
portion rejected, adjusted WER and speed.



3.2 Scalability of general grammars

The experiments reported in this section investi-
gate scalability with respect to the size of the gen-
eral unification grammar. We trained versions of
the domain-specific PSA grammar on reconstructed
versions of the general unification grammar corre-
sponding to merges of increasingly large numbers of
domains, ending with a grammar that merged all six
domains. Table 3 presents statistics on the sizes of
the various versions, measured in terms of the num-
bers of rules and features.

Version Domains #Rules #Feats
included

1 PSA 70 42
2 PSA,HA 74 46
3 PSA,HA 106 56

TD
4 PSA,HA 127 64

TD,MST
5 PSA,HA 139 68

TD,MST
IPA

6 PSA,HA 145 68
TD,MST
IPA,MA

Table 3: Versions of the general grammar used for
grammar scaling experiments. Domain abbrevia-
tions as in Table 1.

It seemed to us that increasing the size of the gen-
eral grammar could potentially cause two undesir-
able effects. Firstly, compile times could increase
unmanageably; secondly, runtime performance of
the resulting recognisers could be adversely af-
fected. In fact, the experiments suggest that neither
of these things happens. Table 4 shows a fairly mod-
est increase in compile times and node arrays as the
size of the general grammar increases. A large part
of the increase occurred in the move from Version
1 to Version 2; this appears to be due to the fact
that noun compounding rules appeared at this point,
significantly increasing grammar coverage and cor-
respondingly decreasing WER. Table 5 shows that
word error rates and rejection rates remain stable,
and processing speed decreases only slightly as the
size of the general grammar increases.

Version EBL T UG CFG T #Nodes
(secs) (secs)

1 110 28 2590
2 155 51 10035
3 205 55 12768
4 300 65 12760
5 341 85 14540
6 409 84 14540

Table 4: Compile-time behaviour with increasingly
large general grammars: time for EBL processing,
time for compilation to CFG form, and number of
nodes in resulting recogniser. Grammar versions as
in Table 3.

3.3 Scalability of training corpora

We next investigated the effects on compile-time and
run-time performance as we increased the number
of training examples used in the EBL specialisation
process. We again used the PSA domain for the ex-
periments. Table 6 suggests that compile times grow
at most linearly with the size of the corpus, and that
the size of the node array grows sub-linearly.

The runtime performance figures in Table 7 sug-
gests that recogniser performance tops out fairly
quickly; the error rates for 5000 training examples
are only marginally better than those for 2500.

3.4 Interleaved expansion and filtering

Finally, we investigated the value of interleaving ex-
pansion and filtering in the UG to CFG compilation
stage (cf. Section 2.3). By suppressing features, we
created a series of versions of the specialised PSA
grammar with the same number of rules, but increas-
ing numbers of features. We then attempted to com-
pile these grammars using a version of the compiler
which carried out a single expansion step which ex-
panded all features simultaneously, followed by a
single filtering step.

In Table 8 we see that the number of expanded
rules and the compilation time both increase rapidly,
and exceeded resource bounds when the grammar
reached 40 features. These results contrast sharply
with those in Table 4, where compilation times in-
crease only slowly as the grammar grows from 42
features (Version 1) to 68 features (Version 6).



Version WER REJ AWER xCPUrt
(%) (%) (%) (%)

Measured on training set
1 20.64 5.66 10.99 6.43
2 10.32 2.02 7.01 9.57
3 10.27 1.73 7.42 10.29
4 10.25 1.65 7.52 10.83
5 10.26 1.69 7.46 11.69
6 10.26 1.69 7.46 11.63

Measured on test set
1 22.61 6.22 12.46 6.60
2 13.88 2.43 9.57 10.11
3 14.17 2.23 10.34 10.93
4 14.08 2.11 10.39 11.48
5 14.13 2.17 10.38 12.26
6 14.13 2.17 10.38 12.24

Table 5: Runtime behavior with increasingly large
general grammars: WER, proportion rejected, ad-
justed WER and speed. Grammar versions as in Ta-
ble 3.

4 Summary and conclusions

This paper has described an approach to grammar-
based language modelling, in which all models are
derived from a single linguistically motivated uni-
fication grammar. Domain-specific CFG language
models are produced by first specialising the gram-
mar using an automatic corpus-based method, and
then compiling the resulting specialised grammars
into CFG form. We have presented results show-
ing that recognisers for multiple, fairly different, do-
mains can be derived from a single general gram-
mar. The process remains tractable as the size of
the general grammar increases, and also scales well
with the size of the training corpus used. We have
also shown that a simple method for compiling uni-
fication grammars into CFG form can be success-
fully applied to grammars containing large numbers
of features, if it is enhanced by suitable interleaving
of the expansion and filtering stages.

Based on experience with other broad-coverage
grammars, we believe that our current general gram-
mar will only need to become moderately larger in
order to achieve very reasonable cross-domain cov-
erage for a large variety of domains. The grammar,
and the tools used to perform the specialisation and

#Examples EBL T UG CFG T #Nodes
(secs) (secs)

250 21 22 4067
500 40 27 9236
1000 79 40 12545
2500 194 63 12827
5000 385 84 14462

Table 6: Compile-time behaviour with increasingly
large training corpora: time for EBL processing,
time for compilation to CFG form, and number of
nodes in resulting recogniser.

#Examples WER REJ AWER xCPUrt
(%) (%) (%) (%)

Measured on training set
250 16.12 3.01 11.33 5.25
500 13.33 2.46 9.45 6.03
1000 12.09 2.09 8.79 7.64
2500 11.19 1.95 7.71 9.39
5000 10.39 1.76 7.45 11.90

Measured on test set
250 21.04 5.07 12.73 5.36
500 17.30 3.84 11.23 6.17
1000 16.63 3.58 10.86 7.67
2500 14.91 2.35 10.72 9.70
5000 14.25 2.20 10.47 12.29

Table 7: Runtime behavior with increasing size of
training corpus: WER, proportion rejected, adjusted
WER and speed.

compilation operations, are all Open Source, and
will soon be made generally available to the com-
munity. The final version of the paper will contain
instructions for accessing and downloading them.
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